12.7 Interpreting Infrared Spectra - Organic Chemistry | OpenStax (2024)

12.7 • Interpreting Infrared Spectra

The complete interpretation of an IR spectrum is difficult because most organic molecules have dozens of different bond stretching and bending motions, and thus have dozens of absorptions. On the one hand, this complexity is a problem because it generally limits the laboratory use of IR spectroscopy to pure samples of fairly small molecules—little can be learned from IR spectroscopy about large, complex biomolecules. On the other hand, this complexity is useful because an IR spectrum acts as a unique fingerprint of a compound. In fact, the complex region of the IR spectrum, from 1500 cm–1 to around 400 cm–1, is called the fingerprint region. If two samples have identical IR spectra, they are almost certainly identical compounds.

Fortunately, we don’t need to interpret an IR spectrum fully to get useful structural information. Most functional groups have characteristic IR absorption bands that don’t change much from one compound to another. The C=O absorption of a ketone is almost always in the range 1680 to 1750 cm–1; the O–H absorption of an alcohol is almost always in the range 3400 to 3650 cm–1; the C=C absorption of an alkene is almost always in the range 1640 to 1680 cm–1; and so forth. By learning where characteristic functional-group absorptions occur, it’s possible to get structural information from IR spectra. Table 12.1 lists the characteristic IR bands of some common functional groups.

Table 12.1 Characteristic IR Absorptions of Some Functional Groups

Functional Group Absorption (cm–1) Intensity
Alkane C–H 2850–2960 Medium
Alkene =C–H 3020–3100 Medium
C=C 1640–1680 Medium
Alkyne ≡C–H≡C–H 3300 Strong
C≡CC≡C 2100–2260 Medium
Alkyl halide C–Cl 600–800 Strong
C–Br 500–600 Strong
Alcohol O–H 3400–3650 Strong, broad
C–O 1050–1150 Strong
Arene C–H 3030 Weak
Aromatic ring 1660–2000 Weak
1450–1600 Medium
Amine N–H 3300–3500 Medium
C–N 1030–1230 Medium
Carbonyl compound C═OC═O 1670–1780 Strong
Aldehyde 1730 Strong
Ketone 1715 Strong
Ester 1735 Strong
Amide 1690 Strong
Carboxylic acid 1710 Strong
Carboxylic acid O–H 2500–3100 Strong, broad
Nitrile C≡NC≡N 2210–2260 Medium
Nitro NO2 1540 Strong

Look at the IR spectra of hexane, 1-hexene, and 1-hexyne in Figure 12.21 to see an example of how IR spectroscopy can be used. Although all three IR spectra contain many peaks, there are characteristic absorptions of C═CC═C and C≡CC≡C functional groups that allow the three compounds to be distinguished. Thus, 1-hexene shows a characteristic C═CC═C absorption at 1660 cm–1 and a vinylic =C–H absorption at 3100 cm–1, whereas 1-hexyne has a C≡CC≡C absorption at 2100 cm–1 and a terminal alkyne ≡CH≡CH absorption at 3300 cm–1.

12.7 Interpreting Infrared Spectra - Organic Chemistry | OpenStax (1)

Figure 12.21 IR spectra of (a) hexane, (b) 1-hexene, and (c) 1-hexyne. Spectra like these are easily obtained from sub-milligram amounts of material in a few minutes using commercially available instruments.

It helps in remembering the position of specific IR absorptions to divide the IR region from 4000 cm–1 to 400 cm–1 into four parts, as shown in Figure 12.22.

  • The region from 4000 to 2500 cm–1 corresponds to absorptions caused by N–H, C–H, and O–H single-bond stretching motions. N–H and O–H bonds absorb in the 3300 to 3600 cm–1 range; C–H bond stretching occurs near 3000 cm–1.
  • The region from 2500 to 2000 cm–1 is where triple-bond stretching occurs. Both C≡NC≡N and C≡CC≡C bonds absorb here.
  • The region from 2000 to 1500 cm–1 is where double bonds (C═OC═O, C═NC═N, and C═CC═C) absorb. Carbonyl groups generally absorb in the range 1680 to 1750 cm–1, and alkene stretching normally occurs in the narrow range of 1640 to 1680 cm–1.
  • The region below 1500 cm–1 is the fingerprint portion of the IR spectrum. A large number of absorptions due to a variety of C–C, C–O, C–N, and C–X single-bond vibrations occur here.

Why do different functional groups absorb where they do? As noted previously, a good analogy is that of two weights (atoms) connected by a spring (a bond). Short, strong bonds vibrate at a higher energy and higher frequency than do long, weak bonds, just as a short, strong spring vibrates faster than a long, weak spring. Thus, triple bonds absorb at a higher frequency than double bonds, which in turn absorb at a higher frequency than single bonds. In addition, C–H, O–H, and N–H bonds vibrate at a higher frequency than bonds between heavier C, O, and N atoms.

Worked Example 12.4

Distinguishing Isomeric Compounds by IR Spectroscopy

Acetone (CH3COCH3) and 2-propen-1-ol (H2C═CHCH2OHH2C═CHCH2OH) are isomers. How could you distinguish them by IR spectroscopy?

Strategy

Identify the functional groups in each molecule, and refer to Table 12.1.

Solution

Acetone has a strong C=O absorption at 1715 cm–1, while 2-propen-1-ol has an –OH absorption at 3500 cm–1 and a C=C absorption at 1660 cm–1.

Problem 12-7

What functional groups might the following molecules contain?

(a)

A compound with a strong absorption at 1710 cm–1

(b)

A compound with a strong absorption at 1540 cm–1

(c)

A compound with strong absorptions at 1720 cm–1 and 2500 to 3100 cm–1

Problem 12-8

How might you use IR spectroscopy to distinguish between the following pairs of isomers?

(a)

CH3CH2OH and CH3OCH3

(b)

Cyclohexane and 1-hexene

(c)

CH3CH2CO2H and HOCH2CH2CHO

12.7 Interpreting Infrared Spectra - Organic Chemistry | OpenStax (2024)
Top Articles
Connecticut Lotto Results - LottoExpert.net
Connecticut Lucky For Life Results - LottoExpert.net
What Did Bimbo Airhead Reply When Asked
Joe Taylor, K1JT – “WSJT-X FT8 and Beyond”
Amc Near My Location
Breaded Mushrooms
DEA closing 2 offices in China even as the agency struggles to stem flow of fentanyl chemicals
Professor Qwertyson
Google Jobs Denver
Fototour verlassener Fliegerhorst Schönwald [Lost Place Brandenburg]
The Powers Below Drop Rate
Overzicht reviews voor 2Cheap.nl
Rainfall Map Oklahoma
Tamilblasters 2023
Kitty Piggy Ssbbw
Webcentral Cuny
ABCproxy | World-Leading Provider of Residential IP Proxies
Busted Mcpherson Newspaper
Who is Jenny Popach? Everything to Know About The Girl Who Allegedly Broke Into the Hype House With Her Mom
Village
Barista Breast Expansion
Craigslist List Albuquerque: Your Ultimate Guide to Buying, Selling, and Finding Everything - First Republic Craigslist
Snohomish Hairmasters
Villano Antillano Desnuda
Unreasonable Zen Riddle Crossword
John Philip Sousa Foundation
Taylored Services Hardeeville Sc
Gncc Live Timing And Scoring
Basil Martusevich
Unm Hsc Zoom
Skroch Funeral Home
Seymour Johnson AFB | MilitaryINSTALLATIONS
Whitehall Preparatory And Fitness Academy Calendar
Baywatch 2017 123Movies
Woodman's Carpentersville Gas Price
Joey Gentile Lpsg
Husker Football
Union Corners Obgyn
Craigslist Boats Dallas
Mugshots Journal Star
Oklahoma City Farm & Garden Craigslist
Hawkview Retreat Pa Cost
Canada Life Insurance Comparison Ivari Vs Sun Life
Gt500 Forums
Ouhsc Qualtrics
Erica Mena Net Worth Forbes
Ihop Deliver
Barber Gym Quantico Hours
Grace Family Church Land O Lakes
Urban Airship Acquires Accengage, Extending Its Worldwide Leadership With Unmatched Presence Across Europe
Hsi Delphi Forum
Roller Znen ZN50QT-E
Latest Posts
Article information

Author: Domingo Moore

Last Updated:

Views: 6208

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Domingo Moore

Birthday: 1997-05-20

Address: 6485 Kohler Route, Antonioton, VT 77375-0299

Phone: +3213869077934

Job: Sales Analyst

Hobby: Kayaking, Roller skating, Cabaret, Rugby, Homebrewing, Creative writing, amateur radio

Introduction: My name is Domingo Moore, I am a attractive, gorgeous, funny, jolly, spotless, nice, fantastic person who loves writing and wants to share my knowledge and understanding with you.